Skip to main content

Birmingham scientists win funding to develop ‘lollipops’ for mouth cancer diagnosis

A ‘lollipop’ that can diagnose mouth cancer early could become a reality, thanks to a pioneering project funded by Cancer Research UK and the Engineering and Physical Sciences Research Council (EPSRC).

Scientists at BHP founder-member the University of Birmingham have been awarded £350,000 over the next three years to develop a prototype flavoured ‘lollipop’ from a material called a smart hydrogel.

Smart hydrogels – previously developed by the University’s Dr Ruchi Gupta and her team – work a bit like a fishing net: they absorb large quantities of water while ‘catching’ larger molecules, such as proteins. The ‘net’ can then be cut open to release the larger molecules for analysis in the lab. The idea is that patients suck on the lollipop, transferring a saliva sample into the hydrogel. Scientists can then release the ‘caught’ proteins by blasting the hydrogel with UV light and then analyse the liquid for saliva proteins which indicate the early stages of mouth cancer.

Around 12,400 people are diagnosed with cancers of the head and neck in the UK every year*. Currently, diagnosing mouth cancer can involve putting a flexible camera on the end of a tube through the nose or mouth and taking a biopsy for testing. This procedure is invasive, time-consuming and requires an endoscopist.

Mum of five, Rachel Parsons, needed a biopsy after being referred to Coventry University Hospital with a lump on her cheek in 2008. She admits she was unprepared for the procedure which, in her case, turned out to be painful.

“I had no idea what a biopsy really was,” said Rachel, from Coventry. “I had the kind of injection you get at the dentists and, when it wore off, it was really sore because I’d needed stitches.”

That was just the beginning of a 12-month nightmare for Rachel who ended up needing a nine-and-a-half-hour operation to remove a cancerous tumour from her cheek and replace the skin with tissue and veins from her forearm.

“The thought of putting a lollipop round your mouth instead of having a biopsy in the first instance is amazing,” said Rachel who has spent years as a patient ambassador, campaigning for more awareness of mouth cancer. “I wish something like that had existed when I was diagnosed.”

Dr Ruchi Gupta, Associate Professor of Biosensors at the University of Birmingham, said she was thrilled to receive funding to begin the next phase of the project: “Smart hydrogels have really exciting potential for diagnosing mouth cancer,” she said. “They can be easily moulded into shapes as a solid to ‘catch’ proteins in saliva.

“We’re really excited to start the next phase of this project. We’re hoping that we can be the first to make a device which is much kinder for diagnosing mouth cancer for patients and easier for GPs to use.”

Rachel, who still has numbness around her face and can’t open her mouth wide enough to eat a burger, added: “I’m so grateful for the research and treatment that saved my life. Things have improved immensely since then but what’s happening now could be absolutely brilliant for people diagnosed in future.”

Executive Director of Research and Innovation at Cancer Research UK, Dr Iain Foulkes, said: “Biopsies and nasoendoscopy are the gold standard for diagnosing mouth cancer, but it requires great skill to carry out and can feel unpleasant for patients. We want an accurate, faster and kinder alternative test which can help us diagnose cases of mouth cancer sooner.

“This project is an exciting first step towards an entirely new way to identify mouth cancers earlier. Research like this is guiding us towards a future where people can live longer, better lives, free from the fear of cancer.”

You might also be interested in:

Revolutionising diagnosis and management of cartilage tumours

The musculoskeletal radiology department at BHP member the Royal Orthopaedic Hospital (ROH) has developed a new website designed to enhance the diagnosis and management of cartilage tumours.

bactip.co.uk is a platform that equips healthcare professionals with the tools and knowledge to navigate the complexities of central cartilage tumours. By offering drawings and real case examples, it serves as a valuable resource for interpreting musculoskeletal radiology imaging findings related to these tumours, ensuring their accurate and consistent reporting. Developed collaboratively by experts in the field, bactip.co.uk offers an approach for assessing, diagnosing and monitoring these lesions.

A standout feature of bactip.co.uk is its integrated calculator, which streamlines the grading process based on tumour characteristics, like size and aggressiveness. This innovative tool aims to simplify decision making processes for healthcare professionals dealing with cartilage tumours. This advanced tool also standardises the reporting of central cartilage tumours, reducing subjective differences and improving patient care.

bactip.co.uk enables radiologists and clinicians to make informed decisions by offering an imaging follow up plan. Whether it involves suggesting a referral to an oncology specialist or safely discharging a patient from surveillance monitoring, the protocol provides a detailed framework customised for each unique case.

As a leading authority in orthopaedic excellence, the ROH musculoskeletal radiology department is proud to share its expertise through bactip.co.uk, an open-source free resource.

Dr A. Mark Davies, consultant radiologist at the ROH commented: “This initiative reflects our commitment to openness making sure that healthcare professionals worldwide can access our cutting-edge knowledge and best practices without any barriers. Our dedication to spreading knowledge and best practices aligns with our shared goal of enhancing patient outcomes on a global scale.”

You might also be interested in:

New research will target earliest stages of bone marrow cancer

A new programme, funded by Cancer Research UK and led by BHP founder-member the University of Birmingham, has set out to attempt to eradicate a major and incurable bone marrow cancer.

An interdisciplinary team of researchers will investigate the underpinning biology of the very early stages myeloma, a cancer that develops from plasma cells – a type of white blood cell – made in the bone marrow. This is game changing research because the early stage, called MGUS, is common and only an unpredictable minority of cases go on to develop the killer disease of myeloma.

MGUS patients have non-cancerous expansion of immune cells in their bone marrow. In most patients this will be stable for many years and will never cause significant harm. The problem is that, in some patients, the cells will become more aggressive and cause full-blown cancer.

For decades it has not been possible to sufficiently tell these two types of patients apart. Until now this challenge has been considered insurmountable resulting in all cases of myeloma being diagnosed very late. However, thanks to the funding by Cancer Research UK it is time to make a change. Using biological and bioinformatic research the team aim to devise ways of accurately predicting which patients with MGUS are truly at risk of developing life threatening myeloma and those that will not.

With the help of experts in the economic challenges faced by health providers such as the NHS the team will then will design the best possible screening strategies to detect the disease and the quickest possible route to clinical trials of ways to prevent myeloma occurring.

Lead researcher Chris Bunce is Professor of Translational Cancer Biology, in the School of Biosciences at the University of Birmingham. He said: “Despite decades of academic and pharmaceutical company research, costing eye watering amounts of money and human endeavour, a cure for myeloma remains elusive.

“All myeloma cases, however, arise from an easily diagnosed pre-condition that remains virtually ignored by researchers. This funding from Cancer Research UK reverses that stance and turns the focus onto the very early stages of myeloma with a view to stopping the disease in its tracks.”

The research aims to provide a deeper understanding of how specific chemicals in the blood change as patients transition from MGUS towards developing myeloma. These changes – first identified by researchers at the University of Birmingham – could help distinguish ‘high risk’ MGUS from ‘low risk’ MGUS, as well as helping to identify potential drug targets for treatment.

Mark Drayson, Professor of Clinical Immunodiagnostics in the University’s Institute of Immunology and Immunotherapy, and co-lead research for the project, said: “By bringing together different approaches and expertise we aim to overcome the existing barriers to developing an effective test for stratifying risk of progression from MGUS to myeloma that is recognised as both affordable and effective.”

Dr Marianne Baker, Science Engagement Manager at Cancer Research UK, said: “To beat cancers that are often diagnosed late, like myeloma, we need to understand the earliest stages of its development – the underlying biology of the disease. This is a historically underfunded area, so we’re excited to see what the project brings; the more our researchers discover, the less room cancer has to manoeuvre. It’s vital we translate results into innovations, like tests that can predict risk, and give treatment the best chance of success.”

You might also be interested in:

New treatment combination may improve outcomes for children with rare cancers

Children who develop neuroblastomas, a rare form of cancer which develops in nerve cells, may benefit from receiving certain anti-tumour drugs as well as chemotherapy, a new trial has found.

The results of the BEACON trial conducted by the Cancer Research UK Clinical Trials Unit (CRCTU) at BHP founder-member the University of Birmingham found that combining anti-angiogenic drugs, which block tumours from forming blood vessels, alongside various chemotherapy drugs led to more young people seeing their tumours shrinking, from 18% in the control group to 26% among those on Bevacizumab.

The findings have been published in the Journal of Clinical Oncology. The trial saw 160 young people aged 1-21, from 43 hospitals in 11 European countries, randomised with half receiving the anti-angiogenic drug called Bevacizumab on top of conventional therapy. The group who received Bevacizumab had an increase in the likelihood of responding to treatment, from 18% among those who only had the established therapy to 26% for those with the additional drug. Patients who received Bevacizumab additionally had better one year progression-free survival rates.

The trial constituted one of many collaborations between the University of Birmingham and European expert groups SIOPEN (International Society of Paediatric Oncology European Neuroblastoma) and ITCC (Innovative therapies for children with cancer).

Simon Gates, Professor of Biostatistics and Clinical Trials at the University of Birmingham and senior lead author of the paper said: “These are very exciting results that hopefully get us closer to finding treatments for children who develop neuroblastomas. Currently, the outcomes are really poor for children who get this horrible cancer and so even seemingly small increases in the chance that a patient is going to be able to shrink their tumours is significant.

“We are delighted that the BEACON trial has helped to shape treatment for children with relapsed and refractory neuroblastoma going forward.”

Dr Lucas Moreno, Head of Paediatric Haematology and Oncology at Vall d’Hebron University Hospital, Barcelona, Spain and Chief Investigator for the study said: “BEACON was a hypothesis-generating trial that has served to identify active regimens that are now being further investigated. We are delighted that the data generated has been incorporated into the current UK Clinical Practice Guidelines and Bevacizumab is incorporated into standard treatment for relapsed neuroblastoma.”

Birmingham’s world-leading cancer trials unit gets £10m boost

A new £10m grant from Cancer Research UK will ensure that adults and children with cancer continue to benefit from world-class clinical trials led by the University of Birmingham.

The news has been hailed as a ‘major boost for patients’ by both clinicians and cancer survivors.

The Cancer Research UK Clinical Trials Unit (CRCTU) at BHP founder-member the University of Birmingham has already achieved significant progress in the treatment of cancer in the UK and internationally, including establishing new standards of treatment for the rare bone and soft tissue cancer, Ewing Sarcoma.

Scientists at the centre have also transformed the management of some types of prostate cancer and introduced treatment innovations for patients with blood cancers.

The new grant will allow researchers working on more than 100 national and international trials to continue developing safe and effective treatments as well as new tests for cancer over the next five years.

Professor Pamela Kearns, Director of the University of Birmingham-based CRCTU unit and children’s cancer expert, said:

“The renewal of funding for cancer trials in Birmingham is a major boost for our research here and we are delighted to continue working with research teams and patients to find new solutions in cancer care. Our clinical research enables us to translate discoveries from the lab and accelerate the improvement of cancer treatments, giving more patients the best chance of beating their disease.

“As a paediatric oncologist, I am particularly pleased this funding will allow our unique Children’s Cancer Trials Unit at Birmingham to continue to design and run clinical trials to improve the care of children with cancer.

“For example, with support from Cancer Research UK, we are leading International trials for children and young people with difficult to treat cancers like FaR-RMS; a trial testing innovative new treatments for rhabdomyosarcoma and the BEACON 2 trial, testing a range of new combinations of therapies for children and young people with a type of childhood cancer called neuroblastoma, at a stage where they have failed to respond well to standard treatments.”

The Birmingham CRCTU will combine strengths in innovative clinical trial methods with outstanding scientific and clinical expertise nationally and internationally to deliver new clinical trials, across all age groups over the next five years. The CRCTU will work alongside the Birmingham Experimental Cancer Medicine Centre, which is also funded by Cancer Research UK and the National Institute for Health and Care Research on trials to tackle more complex types of cancer and for cancers of unmet need.

Professor David Adams, Head of the College of Medical and Dental Sciences and Pro-Vice-Chancellor at the University of Birmingham said:

“The CRCTU is a jewel in the crown of our research portfolio across the University and I am delighted that with this latest funding we will continue to conduct internationally leading research to find better treatments and tests for cancer.

“Together with the ongoing funding for our Experimental Cancer Medicines Centre, the University is ideally placed to continue advances in cancer research which has a hugely significant role in society today. With unprecedented challenges for our NHS and after the effect that the pandemic has had on waiting lists and access to care, we need more than ever to have quick, effective and safe care for cancer.”

The team coordinates ground-breaking clinical trials across the UK and internationally, as well as regionally through Birmingham Health Partners (BHP) – a strategic alliance between seven higher education and health institutions including the University of Birmingham, University Hospitals Birmingham NHS Foundation Trust and Birmingham Women’s and Children’s NHS Foundation Trust.

Improving outcomes – Francesca’s story

Cancer survivor Francesca Williams was one of 640 patients across Europe to benefit from a trial led by the Birmingham centre that has significantly improved outcomes for children and adults with Ewing Sarcoma.

Diagnosed with a tumour in her rib bone just weeks after her 27th birthday in July 2017, Francesca had 15 sessions of chemotherapy and five weeks of radiotherapy back-to-back over ten months. This was followed by major surgery at Heartlands Hospital in April 2018 to remove the remainder of her tumour and rebuild her chest wall using muscle from her back.

Despite going through medically induced menopause and having no time to store any eggs for fertility treatment, Francesca is expecting her first baby in July.

“I feel so lucky to have been part of the trial,” said Francesca, a 32-year-old English teacher who now lives in Austria.

“The worst thing for me was thinking I wouldn’t be able to have children so to find out I was pregnant last year was incredible. I’m really excited about becoming a mum.”

The European-wide trial EE2012, run by the University of Birmingham’s Cancer Research Clinical Trials Unit, tested the standard chemotherapy treatment plan against a new experimental treatment plan in children and adult patients from ten European countries.

The trial – a shorter treatment than the previous standard – found that six per cent more patients were cancer-free after three years, with fewer toxic side-effects. Results were so conclusive that the trial finished early in 2019 and the new treatment adopted as standard across Europe.

“I was very dubious about the trial to begin with but I’m so glad my dad persuaded me to go for it,” said Francesca. “I had no sickness from the chemotherapy so it’s great to hear that the treatment is now being offered as standard. That’s why I feel so passionately about supporting research. Without improvements like this I wouldn’t be here now.

“It’s such a deadly cancer and it is so aggressive, there isn’t the biggest window of opportunity for treatment. It affects a lot of young adults and children who can lose limbs if it’s found in an arm or a leg, but treatment can be successful if it’s caught early enough.”

Cannabinoid-based drug trial for brain tumours launches in Birmingham

A major UK clinical trial of an oral spray containing cannabinoids to treat recurrent glioblastoma has opened in the UK. Funded by The Brain Tumour Charity and coordinated by the Cancer Research UK Clinical Trials Unit at BHP founder-member the University of Birmingham, the three-year phase II trial  will investigate whether combining nabiximols and chemotherapy can help extend the lives of people diagnosed with recurrent glioblastoma.

Anyone interested in this study, which is called ARISTOCRAT, should speak to their medical team first to ensure they are eligible to participate.

It will recruit more than 230 glioblastoma patients at 14 NHS hospitals across England, Scotland and Wales in 2023 including Birmingham, Bristol, Cambridge, Cardiff, Edinburgh, Glasgow, London, Liverpool (Wirral), Manchester, Nottingham, Oxford and Southampton.

Professor Pamela Kearns, Director of the Cancer Research UK Clinical Trials Unit (CRCTU) at the University of Birmingham, which is co-ordinating the trial, said:

“ARISTOCRAT represents a significant step in our journey towards finding safe and effective treatments for the most aggressive brain tumours. By testing innovative combinations of drugs we hope to improve the outcome for this challenging disease.

“We’re immensely proud to be able to bring this trial to patients with the support of the Brain Tumour Charity and thanks to the generosity of all those who gave to the crowdfunding campaign.”

Glioblastoma is the most aggressive form of brain cancer with an average survival of less than 10 months after recurrence.

In 2021, a phase I clinical trial in 27 patients found that nabiximols could be tolerated by patients in combination with chemotherapy, and has the potential to extend the lives of those with recurrent glioblastoma.

Should the trial prove successful, experts hope that nabiximols could represent a new, promising addition to NHS treatment for glioblastoma patients since temozolomide chemotherapy in 2007.

In August 2021, a fundraising appeal by The Brain Tumour Charity, backed by Olympic champion Tom Daley, raised the £450,000 needed for this phase II trial in just three months, and Jazz Pharmaceuticals has generously agreed to provide nabiximols and matched placebo free-of-charge to patients on the ARISTOCRAT trial.

Participants will self-administer nabiximols or a placebo spray and will undergo regular follow-ups with the clinical trial team, including blood tests and MRI scans. This will also be one of the first trials to integrate with The Brain Tumour Charity’s app BRIAN.

Principal Investigator, Professor Susan Short, Professor of Clinical Oncology and Neuro-Oncology at the University of Leeds, said:

“We are very excited to open this trial here in Leeds and very much look forward to running the study which will tell us whether cannabinoid- based drugs could help treat the most aggressive form of brain tumour.

“The treatment of glioblastomas is extremely challenging. Even with surgery, radiotherapy and chemotherapy, nearly all of these brain tumours re-grow within a year, and unfortunately there are very few options for patients once this occurs.

“Cannabinoid-based drugs have well-described effects in the brain and there has been a lot of interest in their use across different cancers for a long time now. Glioblastomas have receptors to cannabinoids on their cell surface, and laboratory studies on glioblastoma cells have shown these drugs may slow tumour growth and work particularly well when used with temozolomide.

“We now have the opportunity to take these laboratory results, and those from the phase I trial and investigate whether this drug could help glioblastoma patients live longer in this first-of-a-kind randomised clinical trial.”

How can I take part in the trial?

Your treating oncologist will be aware of the study if it is open in your hospital or can refer you to a treating centre if necessary. Please speak to your treatment team about eligibility for the trial.

For more information visit the ARISTOCRAT web page on the Cancer Research UK Clinical Trials Unit website.