Skip to main content

£2m study aims to improve early stage ovarian cancer diagnosis

A £2 million study will see an advanced test used at GP surgeries in the West Midlands to diagnose early-stage ovarian cancer – potentially saving thousands of lives a year.

The project involves BHP members Sandwell and West Birmingham (SWB) NHS Trust and the University of Birmingham collaborating with Walsall Healthcare NHS Trust (WHT) and primary care provider Modality, to offer a blood test called ROMA to patients experiencing symptoms of ovarian cancer.

Signs of the disease include bloating, stomach pain, needing to urinate more often and always feeling full.

If symptoms persist or are severe, frequent or out of the ordinary, women are urged to see their GP where – usually – a CA-125 blood test will be carried out, which has around a 50% detection rate of early-stage cancer.

However, the advanced ROMA test used during this trial at Modality-run GP services in Walsall, Sandwell and West Birmingham, will identify key markers of this particular disease at an earlier stage.

If a patient has tested positive, they will be referred to their local Trust to attend a new one stop clinic where they’ll see a consultant, undergo a specialist scan and then a further consultation where the results will be shared. They will be referred for further treatment if needed.

Speaking about the study, called SONATA (tranSforming Ovarian caNcer diAgnostic paThwAys), Sudha Sundar, Professor of Gynaecological Cancer at the University of Birmingham and Consultant Surgeon at SWB NHS Trust, said: “Ovarian cancer is rare and there is a need to increase the understanding and awareness of the symptoms associated with it among our population and GPs.

“We know that 90% of women diagnosed with ovarian cancer at stage one will survive, but this drops drastically to 15% if it is picked up during stage four.

“Research conducted with my team at the University of Birmingham found out that the ROMA test is significantly better than current tests (CA125 and ultrasound) used in both pre and postmenopausal women*.

“A previous study had found that the ROMA test detects up to 20% more early-stage cancers than the current test which only picks up 50% of early-stage cancers**. We are putting this research into practice by carrying out this trial.”

“With Modality-run GP surgeries trialling the ROMA test we will be able to establish if it is acceptable to patients and clinicians. By testing many samples across two large laboratories, we will be able to confirm whether the ROMA test has a higher chance of detecting this cancer earlier than the current CA-125 blood test used and whether implementing this across the NHS will be cost-effective.”

Leading on the project, Dr Aamena Salar, medical director for Modality Partnership Community Services, said: ‘Our aspiration is to transform the care of ovarian cancer by earlier detection and better outcomes for our patients.”

Nina Jhita, programme director at Modality, added: “This is true innovation; we (primary care) are delighted to collaborate with key system partners across the West Midlands to really make a difference to the lives of women while demonstrating how this solution can be scaled across the UK.”

The final part of the study will see 41,000 primary care samples sent to the Black Country Pathology Service and South Tyne and Wear laboratories to accurately establish whether using the ROMA test rather than CA125 will be cost effective for the NHS. The results from the study, funded by the NHS Cancer Programme and the Small Business Research Initiative, will be analysed and used to change the way this cancer is diagnosed in the future.

Professor Sundar added: “It’s an exciting study which is a great example of integrated working between all the organisations involved. We are looking forward to finding out the results so that we can change the way this cancer is detected in the future and drastically improve survival rates.”

*Abstract published in July 2023: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD011964.pub2/full
**Further information can be found here: https://pubmed.ncbi.nlm.nih.gov/27540691/

UHB launches mRNA cancer vaccine trial for colorectal cancer

BHP founder-members University Hospitals Birmingham NHS Foundation Trust (UHB) has become the UK’s first site to launch the BioNTech Messenger RNA (mRNA) cancer vaccines trial which aims to recruit 10,000 people across the UK.

Launching within the NIHR Clinical Research Facility (CRF) at Queen Elizabeth Hospital Birmingham, mRNA vaccines are one of the most exciting experimental developments to emerge from the COVID-19 pandemic – with strong indications that they could become powerful anti-cancer treatments.

Traditionally, vaccines use dead or weakened viruses to stimulate the immune system into recognising or creating harmless antibodies, so when exposed to the real virus, the body is better placed to fend off an overwhelming infection. mRNA is a genetic material that copies instructions found in DNA, using them to make proteins that carry out functions in the body.

Efficiency and speed are part of the appeal of mRNA vaccines. The manufacture of traditional inactivated virus vaccines takes months as scientists are required to grow these on a huge scale, inactivate the virus, and then formulate it to administer in the general population. mRNA vaccine manufacture only requires the right sequence of genetic instructions.

At UHB, this mRNA trial aims to recruit patients with high-risk stage II and stage III colorectal cancers where there is no standard of care treatment to offer the patient following surgery. Each mRNA vaccine delivered will be personalised to the individual patient.

Around 42,900 people are diagnosed with colorectal cancers in the UK each year. It is the 4th most common cancer in the UK. In Birmingham and Solihull alone, almost 700 people are diagnosed with a colorectal cancer each year.

Dr Victoria Kunene, Consultant Oncologist and Principal Investigator for the trial at UHB, said: “I am really very excited that we have been able to lead the way in setting up this arm of the trial, and am looking forward to being part of the wider vaccine program at UHB.

“We are proud to have an impressive team aptly capable of safely delivering these studies here in the West Midlands, and it is a real pleasure to be part of this transformational trial.”

Prof Simon Ball, Chief Medical Officer, said: “A diagnosis of cancer is devastating for patients and their families; this trial represents a monumental step forward in providing not just hope, but a real promise of delivering better outcomes for patients with colorectal cancer, for whom there is not always a standard of care treatment available following surgery.

“Our research teams, supported by the NIHR, have a proven, distinguished track record in delivering vital trials that make significant contributions to medical and scientific discovery with the patient at the very heart; we’re immensely proud to be able to play a strong part in this here in the West Midlands.”

Participants randomised to receive the study treatment will receive 15 treatments of over one year, followed up for at least 36 months. The treatment is, in essence, a personalised medicine for post-operative patients with high-risk stage II/III colorectal cancer, for whom there is no standard of care treatment and involves the development and testing of an individualised cancer treatment called RO7198457.

UHB is the first site open for this trial – a multi-site, open-label, Phase II, randomized, controlled trial to compare the efficacy of RO7198457, versus watchful waiting in resected, Stage II (high risk) and Stage III colorectal cancer patients who are ctDNA positive following resection.

‘Individualised’ means that the treatment is made individually for each participant according to their unique cancer. This is then tested for mutations which create a unique fingerprint. The goal of an individualised cancer treatment approach is to help train the immune system to recognise and attack cancer cells.

Participants who are randomised to the observation group will be followed up for at least 48 months and visit the research site every three months. Care is provided to ensure safety during trial participation, including an informed consenting process, regular follow up where biomarkers and all reported outcomes are collected and analysed.

Incurable blood cancer trial finds new drug better than current treatments

Patients with an incurable blood cancer – polycythaemia vera (PV) – may respond better to a new drug compared to conventional best treatment, a new clinical trial has found.

The rare cancer results in patients producing too many red blood cells and the drug, Ruxolitinib, has been found to be better at treating PV compared to the best currently available treatment. Researchers at BHP founder member the University of Birmingham – funded by Blood Cancer UK – looked at how well the drug worked in those who don’t respond well to the first line of treatment in a randomised phase-II clinical trial.

In this trial, dubbed MAJIC-PV, 39 different hospitals co-ordinated by Birmingham’s Cancer Research UK Clinical Trials Unit (CRCTU) recruited 180 people with PV. They compared ruxolitinib (a drug that targets JAK2 and is already approved for use in PV but not available in the UK) with currently available therapies. Ruxolitinib led to better control of the disease with normal blood counts and a reduced spleen size.

For the first time ever, using samples from the study, the researchers showed that both controlling the blood count and reducing mutated JAK2 by 50% led to fewer disease related events – and that those patients with reduction in JAK2 mutation lived longer, with lower risk of disease progression.

Professor Pamela Kearns, Director of the CRCTU at the University of Birmingham said: “Working on new treatments for incurable cancers is just the kind of thing that the Birmingham Cancer Research UK Clinical Trials Unit is about. I am really pleased that this important clinical trial has found that ruxolitinib has long-term clinical benefit for the ongoing treatment of patients with PV, and that further trials will be able to identify whether the drug can be used as an effective first line treatment.”

PV belongs to a group of conditions that affect the blood called myeloproliferative neoplasms (MPNs). Recently Tim Jonze from the Guardian and ex-radio one DJ David Hamilton have announced they have this form of blood cancer, raising awareness of this lesser-known disease.

The disease is caused by a mutation in a gene called JAK2 and can cause blood clots. Those living with the disease have a risk of a reduced life expectancy as well as development of more aggressive blood cancers including myelofibrosis and acute leukaemia.

One of the commonly used treatments is a drug called – hydroxycarbamide – but those whose cancer does not respond to this drug have a poor prognosis.

Professor Claire Harrison, consultant haematologist at Guy’s and St Thomas’ NHS Foundation Trust and the trial lead, said: “For some time we have wanted to be able to understand the long-term benefits of a drug such as ruxolitinib for patients with PV. This study shows several important messages about this therapy which will hopefully shortly be available for UK patients. These are that comprehensively controlling the blood count reduces disease related events, and that molecular monitoring of mutation levels may also begin to be important.

“Patient therapy is chosen on an individual basis but options have hitherto been limited for PV patients. We are now studying this drug for newly diagnosed patients in a world-first study MITHRIDATE. I would like to thank all the patients who volunteered to be part of this study, their families, UK research teams, Novartis which provided the drug and Blood Cancer UK which funded the trial infrastructure and the trial management team.

Dr Suzanne Rix, Research Funding Programme Manager at Blood Cancer UK, said: “Blood cancer is the fifth most common cause of cancer in the UK, affecting over a quarter of a million people. There is currently no cure for polycythaemia vera and there are a number of complications that can arise from it, so designing, developing and testing medicines to give patients the best outcome possible is vitally important.

“Blood Cancer UK is committed to funding excellent quality scientific research to ensure we deliver better treatments for blood cancer, faster. This trial is a great example of how collaboration between charities, academia, clinicians and pharmaceutical companies can deliver impactful results.

“Our heartfelt thanks go out to those who took part in the trial, without whom we wouldn’t have been able to collect this vital information and continue to improve the outcomes for people with blood cancer.”

Drug combination could overcome tumour resistance in paediatric cancers

Children with some solid tumours may benefit from receiving a combination of inhibitor drugs, according to interim results of research presented at the American Association of Cancer Research’s Annual Meeting 2023, held April 14-19.

The ongoing research being conducted by an international team including the University of Birmingham suggests that a combination of the PARP inhibitor olaparib (Lynparza) and the investigational ATR inhibitor ceralasertib showed clinical benefit in paediatric patients with solid tumours exhibiting DNA replication stress and/or DNA repair deficiencies.

Dr Susanne Gatz, associate clinical professor in pediatric oncology at the Institute of Cancer and Genomic Sciences of the University of Birmingham presented the study.

Dr Gatz said: “To our knowledge, the combination of PARP inhibitors and ATR inhibitors has not been widely investigated in adult tumour types. This is the first proof of principle that the combination is well tolerated and can lead to clinically relevant responses in paediatric cancers.”

AcSé-ESMART is an international European proof-of-concept platform trial intended to match paediatric, adolescent, and young adult patients with relapsed or treatment-refractory cancers with a treatment regimen targeted to their cancer’s mutational profile. Gatz and colleagues, including Birgit Geoerger, MD, PhD, head of the AcSé-ESMART trial, have so far evaluated 15 different treatments, mostly combination strategies, in more than 220 children following mandatory high-throughput genomic profiling of their tumours.

Arm N of AcSé-ESMART is tailored toward patients with malignancies that exhibit defects in DNA replication and damage repair. Impairments in homologous recombination (HR), a type of DNA repair, can sensitize cells to drugs called PARP inhibitors. PARP inhibitors have proven effective against specific adult cancers with HR deficiencies—most notably, mutations in BRCA1 or BRCA2. How to best use PARP inhibitors in paediatric patients where BRCA1/2 mutations are rarely found remains unclear.

Dr Gatz said: “Paediatric cancer cells proliferate rapidly and have some element of replication stress and a dependency on ATR. We think there might be a kind of primary resistance of paediatric cancers to PARP inhibitors and that combination with an ATR inhibitor could potentially overcome that.”

Gatz also explained that paediatric cancers are often driven by complex mechanisms, making it difficult to identify an effective treatment regimen. Single-agent therapies targeting one mutated protein are often insufficient in paediatric patients, necessitating additional research into combination therapies and mechanisms of response.

“So far, it is unclear if the molecular alterations based on which the patients were enrolled in this trial are the sole reasons for response,” Gatz said.

“Further, it may be difficult to identify patterns of response in specific tumour types due to the tumour-agnostic nature of the study. Nevertheless, this study design can give preliminary indications of signals in specific alterations and tumour types and can provide the basis for future clinical trials.”

Gatz and colleagues plan to evaluate biomarkers of response from the raw sequencing data of the enrolled patients, from the expression of key target proteins such as ATM, and from RNA sequencing data.

Gatz noted that these analyses may identify “molecular constellations” indicative of response to olaparib plus ceralasertib.

“There are enormously valuable drugs currently in development and, provided there is a good clinical or preclinical rationale, we need to apply them more creatively to diseases for which the drug is not currently indicated,” Gatz said.

Limitations of this study include a small, non-randomized sample intended primarily as a proof of concept and to determine the optimal dose for study expansion.

The study is as yet unpublished.

Leukaemia trial tests Covid vaccine strategies to combat immune suppression

Patients with the most common form of leukaemia – Chronic Lymphocytic Leukaemia (CLL) – are being invited to take part in a trial that could help them build Covid-19 antibodies following vaccination, when they previously have had poor responses.

Blood cancer patients are known to be at high risk of Covid-19 and many are part of the ‘forgotten 500k’ who are not well protected by Covid-19 vaccination and are therefore still very cautious going about their daily lives in contrast to those who are not immunocompromised.

Research has found that CLL patients who take either ibrutinib or acalabrutinib over the long term are not responding to Covid vaccination as well as those who are not taking the drug. Their antibody response is usually much lower, meaning the vaccine is not as effective in protecting against the disease.

Dr Helen Parry, Associate Professor at the Institute of Immunology and Immunotherapy at the University of Birmingham, is leading the IMPROVE trial and explained: “This study aims to determine if it is possible to improve the immune response by pausing ibrutinib or acalabrutinib treatment for a short period around the time of vaccination. It will also monitor whether pausing this treatment is well tolerated by patients by looking for symptom flare.

“At present there is no advice for CLL patients regarding whether pausing their treatment is the safest approach to vaccination, but anyone who participates in the trial will help to build a vital evidence base so that appropriate advice can be given in future.”

Patients interested in participating must be able to travel to one of the six trial sites: Birmingham, Stoke on Trent, London, Dudley, Oxford or Nottingham.

Anyone interested in taking part in the trial can email the trial team or call 0808 175 1455, and further information is available on the IMPROVE trial website.

Funding renewal allows experimental cancer therapy research to continue in Birmingham

New and innovative ways to detect and treat cancer being trialled at the University of Birmingham are to receive renewed funding from Cancer Research UK and the NIHR.

The Birmingham Experimental Cancer Medicine Centre (ECMC), jointly funded by Cancer Research UK and the National Institute for Health and Care Research in England, provides world-leading expertise in the development of innovative cancer trials. New funding will enable the Birmingham ECMC to continue to conduct the highest quality trials into experimental treatments for cancer over the next five years.

The centre aims to be an integrated translational hub for cancer research in Birmingham and brings together the University of Birmingham’s global expertise in cancer research and strength in clinical trials to deliver accelerated patient benefit regionally, across the ECMC network and globally.

The centre is part of world-leading cancer research infrastructure in Birmingham alongside the Birmingham Cancer Research Clinical Trials Unit (CRCTU) and the NIHR Biomedical Research Centre. The funding enables the University of Birmingham, working closely together with organisations across the Birmingham Health Partners network, to focus on three themes in experimental cancer medicine: Precision Medicine, Cancer Immunotherapy and Biomarker-driven patient stratification.

Gary Middleton, Professor of Medical Oncology and Centre Director for the Birmingham Experimental Cancer Medicine Centre said:

“Thanks to the funding from Cancer Research UK and the National Institute for Health and Care Research we will be able to continue to design and deliver trials that have the power to make a huge difference to the lives of cancer patients.

“Over the past five years we have already made significant advances in precision medicine for cancer including through the National Lung Matrix trial. With renewed funding we will be able to drive forward the next generation of these studies, offering access to personalised therapies to cancer patients in the West Midlands and across the national ECMC network.”

Case study: Lung Matrix Trial

Executive Director of Research and Innovation at Cancer Research UK, Dr Iain Foulkes, said:

“We are proud to be supporting an expansion of our successful ECMC network, bringing together vast medical and scientific expertise to translate the latest scientific discoveries from the lab into the clinic.

“The ECMC network is delivering the cancer treatments of the future, bringing new hope to people affected by cancer. The trials taking place today will give the next generation the best possible chance of beating cancer.

Chief Executive of the NIHR, Professor Lucy Chappell, said:

“The ECMC Network is a vital strategic investment in the UK’s cancer research community, bringing together top scientists and clinicians to tackle some of the biggest scientific challenges in cancer and improve outcomes for patients.

“Through this route, we enable more people to join trials that could help them. The ECMC Network will give access to brand new experimental treatments for patients, including children and young people, paving the way for these treatments to be used in the clinic one day. This is a crucial part of NIHR’s work, and enables more people to join trials that might help them. We are proud to be partnering with Cancer Research UK and the Little Princess Trust in funding this network.”

Building on success

Birmingham is part of a network of 17 ECMCs across the UK, funded by Cancer Research UK and the NIHR, which deliver clinical trials of promising new treatments. Since 2007, when the network was first established, around 30,000 patients have taken part in 2,100 trials.

The funding will allow new, experimental treatments – including immunotherapies – for a wide variety of cancers to be developed, as well as improve existing treatments.

ECMCs work in conjunction with local NHS facilities to provide access to cutting-edge cancer treatments. Testing these treatments helps to establish new ways of detecting and monitoring the disease and to evaluate how it responds to the treatment.

DETERMINE

The University of Birmingham is part of a newly announced partnership which is running a multi-drug, precision medicine platform trial for adults and children with rare cancers who have run out of other treatment options.

The DETERMINE trial is one of the largest precision medicine platform trials targeting these populations and it will enrol patients who have an identifiable genetic alteration in their cancer that can be targeted by treatments that are already approved for use in other cancer types.

The trial is aiming to recruit patients with rare adult and paediatric cancers, as well as more common cancers with rare genetic alterations that could be targeted by the drugs being studied in the trial.