Skip to main content

Leukaemia trial tests Covid vaccine strategies to combat immune suppression

Patients with the most common form of leukaemia – Chronic Lymphocytic Leukaemia (CLL) – are being invited to take part in a trial that could help them build Covid-19 antibodies following vaccination, when they previously have had poor responses.

Blood cancer patients are known to be at high risk of Covid-19 and many are part of the ‘forgotten 500k’ who are not well protected by Covid-19 vaccination and are therefore still very cautious going about their daily lives in contrast to those who are not immunocompromised.

Research has found that CLL patients who take either ibrutinib or acalabrutinib over the long term are not responding to Covid vaccination as well as those who are not taking the drug. Their antibody response is usually much lower, meaning the vaccine is not as effective in protecting against the disease.

Dr Helen Parry, Associate Professor at the Institute of Immunology and Immunotherapy at the University of Birmingham, is leading the IMPROVE trial and explained: “This study aims to determine if it is possible to improve the immune response by pausing ibrutinib or acalabrutinib treatment for a short period around the time of vaccination. It will also monitor whether pausing this treatment is well tolerated by patients by looking for symptom flare.

“At present there is no advice for CLL patients regarding whether pausing their treatment is the safest approach to vaccination, but anyone who participates in the trial will help to build a vital evidence base so that appropriate advice can be given in future.”

Patients interested in participating must be able to travel to one of the six trial sites: Birmingham, Stoke on Trent, London, Dudley, Oxford or Nottingham.

Anyone interested in taking part in the trial can email the trial team or call 0808 175 1455, and further information is available on the IMPROVE trial website.

Funding renewal allows experimental cancer therapy research to continue in Birmingham

New and innovative ways to detect and treat cancer being trialled at the University of Birmingham are to receive renewed funding from Cancer Research UK and the NIHR.

The Birmingham Experimental Cancer Medicine Centre (ECMC), jointly funded by Cancer Research UK and the National Institute for Health and Care Research in England, provides world-leading expertise in the development of innovative cancer trials. New funding will enable the Birmingham ECMC to continue to conduct the highest quality trials into experimental treatments for cancer over the next five years.

The centre aims to be an integrated translational hub for cancer research in Birmingham and brings together the University of Birmingham’s global expertise in cancer research and strength in clinical trials to deliver accelerated patient benefit regionally, across the ECMC network and globally.

The centre is part of world-leading cancer research infrastructure in Birmingham alongside the Birmingham Cancer Research Clinical Trials Unit (CRCTU) and the NIHR Biomedical Research Centre. The funding enables the University of Birmingham, working closely together with organisations across the Birmingham Health Partners network, to focus on three themes in experimental cancer medicine: Precision Medicine, Cancer Immunotherapy and Biomarker-driven patient stratification.

Gary Middleton, Professor of Medical Oncology and Centre Director for the Birmingham Experimental Cancer Medicine Centre said:

“Thanks to the funding from Cancer Research UK and the National Institute for Health and Care Research we will be able to continue to design and deliver trials that have the power to make a huge difference to the lives of cancer patients.

“Over the past five years we have already made significant advances in precision medicine for cancer including through the National Lung Matrix trial. With renewed funding we will be able to drive forward the next generation of these studies, offering access to personalised therapies to cancer patients in the West Midlands and across the national ECMC network.”

Case study: Lung Matrix Trial

Executive Director of Research and Innovation at Cancer Research UK, Dr Iain Foulkes, said:

“We are proud to be supporting an expansion of our successful ECMC network, bringing together vast medical and scientific expertise to translate the latest scientific discoveries from the lab into the clinic.

“The ECMC network is delivering the cancer treatments of the future, bringing new hope to people affected by cancer. The trials taking place today will give the next generation the best possible chance of beating cancer.

Chief Executive of the NIHR, Professor Lucy Chappell, said:

“The ECMC Network is a vital strategic investment in the UK’s cancer research community, bringing together top scientists and clinicians to tackle some of the biggest scientific challenges in cancer and improve outcomes for patients.

“Through this route, we enable more people to join trials that could help them. The ECMC Network will give access to brand new experimental treatments for patients, including children and young people, paving the way for these treatments to be used in the clinic one day. This is a crucial part of NIHR’s work, and enables more people to join trials that might help them. We are proud to be partnering with Cancer Research UK and the Little Princess Trust in funding this network.”

Building on success

Birmingham is part of a network of 17 ECMCs across the UK, funded by Cancer Research UK and the NIHR, which deliver clinical trials of promising new treatments. Since 2007, when the network was first established, around 30,000 patients have taken part in 2,100 trials.

The funding will allow new, experimental treatments – including immunotherapies – for a wide variety of cancers to be developed, as well as improve existing treatments.

ECMCs work in conjunction with local NHS facilities to provide access to cutting-edge cancer treatments. Testing these treatments helps to establish new ways of detecting and monitoring the disease and to evaluate how it responds to the treatment.

DETERMINE

The University of Birmingham is part of a newly announced partnership which is running a multi-drug, precision medicine platform trial for adults and children with rare cancers who have run out of other treatment options.

The DETERMINE trial is one of the largest precision medicine platform trials targeting these populations and it will enrol patients who have an identifiable genetic alteration in their cancer that can be targeted by treatments that are already approved for use in other cancer types.

The trial is aiming to recruit patients with rare adult and paediatric cancers, as well as more common cancers with rare genetic alterations that could be targeted by the drugs being studied in the trial.

Researchers make mini ‘bone-marrow-in-a-dish’ to test cancer treatments

Scientists from BHP and Oxford University have made the first bone marrow ‘organoids’ that capture the key features of human bone marrow. The technology, for which University of Birmingham Enterprise has filed a patent application, will allow for the screening of multiple anti-cancer drugs at the same time, as well as testing personalised treatments for individual cancer patients.

A study, published in the journal Cancer Discovery, describes the new method; a process resulting in the production of an organoid that faithfully models the cellular, molecular and architectural features of myelopoietic (blood cell producing) bone marrow.

The research also showed that the organoids provide a micro-environment that can enable the survival of cells from patients with blood malignancies, including multiple myeloma cells, which are notoriously difficult to maintain outside the human body.

First author Dr Abdullah Khan, a Sir Henry Wellcome Fellow at BHP founder-member the University of Birmingham, said: “Remarkably, we found that the cells in their bone marrow organoids resemble real bone marrow cells not just in terms of their activity and function, but also in their architectural relationships – the cell types ‘self-organise’ and arrange themselves within the organoids just like they do in human bone marrow in the body.”

A cross section of a mini bone marrow organoid, showing cells that produce blood platelets, in a network of blood vessels. Credit: Dr A Khan, University of Birmingham

This lifelike architecture enabled the team to study how the cells in the bone marrow interact to support normal blood cell production, and how this is disturbed in bone marrow fibrosis (myelofibrosis), where scar tissue builds up in the bone marrow, causing bone marrow failure. Bone marrow fibrosis can develop in patients with certain types of blood cancers and remains incurable.

Senior study author Professor Bethan Psaila, a haematology medical doctor as well as a research Group Leader at the Radcliffe Department of Medicine, University of Oxford, said: “To properly understand how and why blood cancers develop, we need to use experimental systems that closely resemble how real human bone marrow works, which we haven’t really had before. It’s really exciting to now have this terrific system, as finally, we are able to study cancer directly using cells from our patients, rather than relying on animal models or other simpler systems that do not properly show us how the cancer is developing in the bone marrow in actual patients.”

Dr Khan also added: “This is a huge step forward, enabling insights into the growth patterns of cancer cells and potentially a more personalised approach to treatment. We now have a platform that we can use to test drugs on a ‘personalised medicine’ basis.

“Having developed and validated the model is the first crucial step, and in our ongoing collaborative work we will be working with others to better understand how the bone marrow works in healthy people, and what goes wrong when they have blood diseases.”

Dr Psaila added: “We hope that this new technique will help accelerate the discovery and testing of new blood cancer treatments, getting improved drugs for our patients to clinical trials faster.”

‘Cellular brake’ offers clue to autoimmune response during immunotherapy

A ‘cellular brake’ which could prevent lung cancer patients from developing a dangerous autoimmune response during treatment has been identified by scientists.

The finding, published in Nature Communications, is the first clue to the cause of autoimmune toxicity, in which patients develop dangerous additional conditions during immunotherapy treatment.

Immunotherapy works by enabling the body’s immune cells (T cells) to engage with and kill tumour cells. They do this by suppressing proteins called immune checkpoints. These exist to prevent an immune response from being so strong that it destroys healthy cells in the body.

Autoimmune toxicity, which includes conditions such as pneumonitis, or inflammation of the lungs, can affect lung cancer patients undergoing immunotherapy treatment. Pneumonitis is responsible for around 35 per cent of treatment-related deaths in lung cancer patients.

Given the increasing use of immunotherapy treatment against cancer, the management of these reactions has become a significant healthcare challenge. Most commonly, clinicians will recommend discontinuing the treatment and exploring other options.

Led by Professor Gary Middleton, the team, in the University’s Institute of Immunology and Immunotherapy pinpointed a specific biological response among patients who develop autoimmune toxicity. They found a ‘cellular brake’ – a protein which would normally limit the activity of the T cells – is missing or not functioning properly.

By identifying patients who lack this cellular brake, it may be possible to recognise patients at high risk of developing severe autoimmune complications.

Lead author Dr Akshay Patel said: “Immunotherapy is an extremely important weapon in cancer treatment and so identifying people who are at particular risk of developing these potentially life-threatening autoimmune conditions is key to weighing the risks and benefits of different treatments. It would enable clinicians to closely monitor high-risk patients, develop preventative strategies, or pursue alternative treatments altogether.”

The research was funded by Cancer Research UK and the National Institute for Health and Care Research (NIHR) Biomedical Research Centre.

Identifying DNA repair genes holds promise for improving cancer treatment

A new way in which cancer cells can repair DNA damage has been discovered by researchers at BHP founder-member the University of Birmingham.

These new findings shed new light on how cancer cells react to chemotherapy and radiotherapy, and also uncover a new way in which cancer can become resistant to particular treatments. These insights may enable clinicians to select different cancer treatments that can be more targeted to specific patients.

Repairing damage to DNA is vital for cells to remain healthy, and to prevent diseases like cancer from developing. Understanding how DNA repair works is crucial to better understand how cancer develops, and also how anti-cancer treatments like radiotherapy and chemotherapy can be used effectively to induce DNA damage that kill cancer cells.

In the study, published in Molecular Cell, a team of researchers in the University’s Institute of Cancer and Genomic Sciences pinpointed two proteins that had not previously been identified in the DNA repair process.

Professor Martin Higgs, Associate Professor for Genomics and Rare Disease in the Institute of Cancer and Genomic Sciences, explained: “This research has the potential to change how cancer patients are identified for treatment and also how they become resistant to different drugs, which will improve treatment efficiency as well as patient outcomes.”

Called SETD1A and BOD1L, these proteins modify other proteins called histones which are bound to DNA. Removing these two proteins changes how DNA is repaired, and makes cancer cells more sensitive to radiotherapy. Loss of SETD1A and BOD1L also makes cancer cells resistant to certain anti-cancer drugs called PARP inhibitors.

Lead author Associate Professor Martin Higgs explained: “This is the first time that these genes have been directly linked to DNA repair in cancer. This research has the potential to change how cancer patients are identified for treatment and also how they become resistant to different drugs, which will improve treatment efficiency as well as patient outcomes.”

The team hopes the work could eventually also lead to new inhibitors being developed that would allow clinicians to re-sensitise cancers that have become resistant to certain therapies.

The research was funded by the Medical Research CouncilCancer Research UK, and the Wellcome Trust.

New research collaboration will develop precision cell therapies for blood disorders

The Universities of Birmingham and Oxford are to take part in one of five NHS Blood and Transplant (NHSBT) research units launched today.

The £20m programme, co-funded by the National Institute for Health and Care Research (NIHR) and NHSBT – is aimed at providing new technologies, techniques or insights that will benefit donation, transfusion, and transplantation. The NIHR BTRUs are partnerships between universities and NHSBT.

Many of the work strands in the new units could result in new technologies and practices that can then be delivered at scale by NHSBT, helping to save and improve even more lives. Much of the work will be aimed at reducing health disparities and improving access to new treatments.

Researchers at the Universities of Birmingham (UoB) and Oxford are part of the NIHR BTRU in Precision Cellular Therapeutics – also working in collaboration with University Hospitals Birmingham (UHB) NHS Foundation Trust. UoB and UHB are both founding members of BHP, with a long history of collaborative research and development.  

The aim is to develop new kinds of cell therapies for blood disorders and blood cancer, and improved systems for following up patients receiving treatment to better support their care.

There is a wide range of work in the package but examples include:

    • Transplants work in blood cancer patients because some of the donor immune cells attack and eliminate the cancer, but these cells can also attack the donors own cells and cause a complication called graft versus host disease (GvHD).  The team will seek to identify and clone the receptors that enable the T cells to target the cancer cells while reducing the toxicity due to GvHD seen in patients. The ultimate aim of this research is develop a novel clinical trial, with NHSBT, via its cell therapy manufacturing infrastructure, expanding these cancer specific T cell receptors for use in patients.
    • There is a shortage of suitable cell donors for minority communities.  Cord blood units from babies may be a match but not have enough cells to be successful in adults. The team will seek to expand and gene edit the stem cells in cord blood, so they could be used with increased safely in a wider range of adults.  NHSBT will support the translation of this research through to early phase clinical trials, providing process development, manufacturing and quality control expertise.  This initiative will drive wider access to cord blood transplant.
    • It is important that patients from all communities benefit from cell therapies.  The team will seek to better understand how patients access the newer cell therapies and how they perceive the benefits of treatment.  The team will develop new digital technologies that improve care by enhancing interactions between the patients and their doctors and nurses.

The BRTUs are funded by £16m from the NIHR and £4m from NHSBT, with research goals set to meet NHSBT’s requirements, to be delivered between 2022 and 2027.

The products could be manufactured at the latest NHSBT sites including major new centres such as the new cellular therapies laboratories in Barnsley and the forthcoming Clinical Biotechnology Centre in Bristol.

Dr Gail Miflin, Chief Medical Officer for NHSBT, said: “By collaborating with academia, these five new Blood and Transplant Research Units will help us to deliver on our mission to ‘save and improve even more lives’ and drive innovation to inform future clinical practice and improve patient outcomes.

“For example, the supply-demand gap for solid organs continues to grow. We will explore the use of organ perfusion technologies to maintain and enhance the quality of organs, improve organ preservation and increase organ utilisation. This will enable more patients to receive the transplant they need.

“And by building and analysing new data sets to track and demonstrate the impact of our interventions will lead to better understanding and improved outcomes. We already do this well for solid organs, but do not currently understand the outcomes for people who receive blood or stem cells. We will work with partners to build integrated data sets for these patients, focusing on the multi-transfused, especially those with sickle cell disease where a clear health inequity exists.

“To maximise the value and impact from our research, we will accelerate the translation of innovation into practice. The NIHR BTRUs will be an important vehicle for this in the longer term.”