Skip to main content

LIBERATE heart attack trial treats first patient

The first patient has been treated in the LIBERATE clinical study to evaluate glenzocimab efficacy in myocardial infarction, which involves BHP members the University of Birmingham and University Hospitals Birmingham NHS Foundation Trust (UHB).

In 2022, the University  signed a partnership agreement with Acticor Biotech to evaluate glenzocimab efficacy in myocardial infarction in a new clinical trial called LIBERATE.

Having obtained full regulatory approval in August 2023, two clinical research sites, the Queen Elizabeth Hospital in Birmingham – part of UHB – and the Northern General Hospital in Sheffield, are involved in the study. The Queen Elizabeth Hospital opened to recruitment on 24th January 2024. It is expected that the Northern General Hospital in Sheffield will also open to recruitment by the end of February 2024.

The LIBERATE study, a randomiSed, double-blind Phase 2b trial, will enrol over 200 patients diagnosed with ST-elevation myocardial infarction (STEMI) and scheduled for percutaneous coronary intervention. The primary objective of the study is to evaluate both the safety and efficacy of glenzocimab at a dosage of 1000 mg compared to a placebo, specifically focusing on the reduction of myocardial infarct size at Day 90 post-treatment.

Professor Jon Townend, Chief Investigator of the trial who works across BHP members the University of Birmingham and UHB as Consultant Cardiologist and Honorary Professor of Cardiology, said: “We have entered the operational phase of the trial, and I extend my gratitude to the entire team in Birmingham and Sheffield for their outstanding efforts in managing patient recruitment in these critical emergency care settings, as well as for gathering qualitative data for subsequent analysis.”

Dr Mark Thomas, Associate Professor of Cardiology at the University of Birmingham and Honorary Consultant Cardiologist, who designed the trial and led its development, said: “This is the first time worldwide that this class of medication has been investigated in patients with heart attacks, after showing great promise in patients with stroke. We are grateful to our patients for helping us in our mission to find new treatments that may help to reduce the damage done by heart attacks.”

Professor Robert Storey, Professor of Cardiology at the University of Sheffield and Honorary Consultant Cardiologist and Director of the Cardiovascular Research Unit at Northern General Hospital, said: “This study is exploring the potential of glenzocimab in reducing the type of blood clotting responsible for heart damage during heart attacks. This exciting collaboration with University of Birmingham and Acticor Biotech holds the potential to bring significant benefit to people suffering from a heart attack.”

Adeline Meilhoc, Head of Global Clinical Development of Acticor Biotech said: “We are delighted to witness the operational start of the study, and we reiterate our complete confidence in our partners as crucial contributors of its success. Acticor Biotech is dedicated to advancing treatments for the acute phase of thrombotic diseases. Glenzocimab application in ST-segment elevation myocardial infarction (STEMI) represents a significant focal point for Acticor Biotech’s commitment to medical advancement.”

New treatment combination may improve outcomes for children with rare cancers

Children who develop neuroblastomas, a rare form of cancer which develops in nerve cells, may benefit from receiving certain anti-tumour drugs as well as chemotherapy, a new trial has found.

The results of the BEACON trial conducted by the Cancer Research UK Clinical Trials Unit (CRCTU) at BHP founder-member the University of Birmingham found that combining anti-angiogenic drugs, which block tumours from forming blood vessels, alongside various chemotherapy drugs led to more young people seeing their tumours shrinking, from 18% in the control group to 26% among those on Bevacizumab.

The findings have been published in the Journal of Clinical Oncology. The trial saw 160 young people aged 1-21, from 43 hospitals in 11 European countries, randomised with half receiving the anti-angiogenic drug called Bevacizumab on top of conventional therapy. The group who received Bevacizumab had an increase in the likelihood of responding to treatment, from 18% among those who only had the established therapy to 26% for those with the additional drug. Patients who received Bevacizumab additionally had better one year progression-free survival rates.

The trial constituted one of many collaborations between the University of Birmingham and European expert groups SIOPEN (International Society of Paediatric Oncology European Neuroblastoma) and ITCC (Innovative therapies for children with cancer).

Simon Gates, Professor of Biostatistics and Clinical Trials at the University of Birmingham and senior lead author of the paper said: “These are very exciting results that hopefully get us closer to finding treatments for children who develop neuroblastomas. Currently, the outcomes are really poor for children who get this horrible cancer and so even seemingly small increases in the chance that a patient is going to be able to shrink their tumours is significant.

“We are delighted that the BEACON trial has helped to shape treatment for children with relapsed and refractory neuroblastoma going forward.”

Dr Lucas Moreno, Head of Paediatric Haematology and Oncology at Vall d’Hebron University Hospital, Barcelona, Spain and Chief Investigator for the study said: “BEACON was a hypothesis-generating trial that has served to identify active regimens that are now being further investigated. We are delighted that the data generated has been incorporated into the current UK Clinical Practice Guidelines and Bevacizumab is incorporated into standard treatment for relapsed neuroblastoma.”

Professor Amos Burke appointed Director of Birmingham’s Cancer Research UK Clinical Trials Unit (CRCTU)

Professor Amos Burke has been appointed as the new Director of the Cancer Research UK Clinical Trials Unit, based at BHP founder-member the University of Birmingham.

Professor Burke – a paediatric oncologist and has held a consultant position in the NHS since 2004 – joins the Unit from Cambridge University Hospitals NHS Foundation Trust.  With a particular interest in childhood lymphomas, Professor Burke chaired the UK paediatric Non-Hodgkin Lymphoma subgroup of the National Cancer Research Institute (NCRI) Lymphoma Clinical Studies Group (2010-2018), remaining an active member (2019-2023). Since 2023 he has been the Deputy Chair of the UK Children’s Research Group (currently supported by the Children’s Cancer and Leukaemia Group).

Commenting on his appointment, Amos said: “I am delighted to be joining CRCTU as it approaches its 40th year of CRUK funding as a result of its work under the leadership of the former Directors, most recently Professor Pam Kearns who brought children’s cancer trials into the unit during her tenure. CRCTU is nationally and internationally known for its trials in childhood and adult cancer, addressing unmet clinical needs and leading the use of innovative trial design. I look forward to leading CRCTU going forward as new approaches to increasingly complex trials involving more global collaboration are required.”

As the new Director of the CRCTU, he is responsible for the delivery of clinical cancer trials for children and young people in England. The CRCTU collaborates with clinician investigators driving cutting-edge research, with a focus on treatments that will change outcomes for people with cancer.

Professor Burke is currently the Chief Investigator for the innovative platform trial Glo-BNHL for children with relapsed and refractory mature B-cell Non-Hodgkin Lymphoma.

Rare disease trials to develop playbook for testing new treatments

Patients with rare diseases could benefit from a ‘revolution’ in clinical trials that could see one-stop studies designed to provide robust results even with small numbers of participants.

The CAPTIVATE node is part of the recently introduced UK Rare Disease Research Platform established as part of a £14 million investment over five years by the Medical Research Council (MRC) and the National Institute for Health and Care Research (NIHR).

Led by BHP founder-member the University of Birmingham along with collaborators at the Universities of Sheffield and Liverpool, the CAPTIVATE node will be developing a methodology to run a ‘one-stop-study’, which would encompass all phases of clinical trials to enable the efficient evaluation of treatments for rare diseases.

The CAPTIVATE node will bring together the UK’s leading trial experts with hospital researchers experienced in rare diseases, industry partners, policy makers and patient partners, and the resulting designs could speed up the approval of medicines for use in rare diseases.

Professor Lucinda Billingham at the University of Birmingham is the lead academic for the CAPTIVATE node of the MRC-NIHR UK Rare Disease Research Platform. She explained: “One of the biggest challenges with developing new treatments or improving existing ways of treating rare diseases is that the model of clinical trial that is used as standard is incredibly difficult to run where there may be only hundreds of people around the world at any one time with that disease.

“Added to this fact, in the UK three quarters of rare diseases affect children and more than 30% of children with a rare disease die before their fifth birthday.

“The CAPTIVATE node is looking to scale a revolutionary model of clinical trial that runs all the phases together and can get clinically significant results even with very small numbers of patients. We want to find ways that need as few people to take part as possible, that are quicker and that provide all the information needed for the authorities to approve a new medicine to be prescribed to people with rare diseases from one single trial.”

Bringing together strengths in rare diseases

The MRC-NIHR UK Rare Disease Research Platform is now getting up and running and will bring together UK strengths in rare diseases research to improve diagnosis and treatment through better understanding of the disease.

It is made up of a central coordination and administrative hub and 11 specialist nodes based at universities across the UK, including the CAPTIVATE node at the University of Birmingham.

The aim of the platform is to bring together expertise from across the UK rare disease research system to foster new and innovative treatments for those directly and indirectly impacted by rare conditions.

Professor Lucy Chappell, Chief Executive of the NIHR, commented: “The UK Rare Disease Platform marks a significant advance in accelerating rare disease research, supported through NIHR funding and our partners the Medical Research Council. The platform will enable greater collaboration between patients and those working across academic, clinical and industry research. By bringing the right people and expertise together, we will be able to provide better care more quickly to those living with rare diseases.

“The NIHR continues to lead essential ongoing research into rare diseases, including through our Biomedical Research Centres, and we are making it easier for people with rare diseases to take part in research opportunities via our Be Part of Research Service, which can now be accessed through the NHS app in England. We look forward to working with our partners further to accelerate our understanding and treatment of rare diseases affecting millions of people across the UK.”

Stem cell therapy for heart attack patients trialled at UHB

A stem cell therapy trial at BHP founder-member University Hospitals Birmingham is having a life-changing effect on heart attack patients, with scans showing almost complete restoration of heart muscle function just weeks after the procedure. 

After a heart attack, around 30% of patients are left with severely damaged and weakened hearts which can, over time, lead to life-threatening heart failure, as the heart is unable to pump the blood around the body properly. The trial therapy aims to prevent this heart failure by regenerating the damaged muscle.

Developed by biotechnology company CellProthera, the therapy involves the application of a person’s own stem cells directly into their heart, through the femoral artery in the leg. The patient’s heart activity is then monitored for six months – at 1, 3 and 6 months – using echocardiography and magnetic resonance imaging (MRI).

66 year old Kim Smith is one of four patients recruited to the trial at UHB and was randomly allocated to the experimental arm of the study, meaning that she received the therapy as treatment following her heart attack. Just two weeks after receiving the therapy, Kim’s heart function had returned to almost normal (55%).

Kim said: “I now feel as though I can actually do what I used to do before. When I had the heart attack, I was worried that I was going to end up being stuck at home all day, but since having the stem cell therapy, psychologically and physically, I just feel so much better.

“I’m so grateful to have had this treatment, and I do hope that the research that they are doing goes forward because I think a lot of people would benefit. That was my reason for doing it in the first place – even if it does nothing for me, it could help someone else.”

So far, approximately 50 patients from the UK and France have been recruited to the trial, known as the EXCELLENT (Expanded Cell Endocardial Transplantation) study. The research is currently in its final phase, with results expected later this year.

Dr Sohail Khan, Consultant Interventional Cardiologist and Lead Investigator at UHB for the EXCELLENT study, said: “What we have seen so far is that actually the stem cells do seem to have a dramatic effect in terms of improving heart muscle function.

“Currently, there are few clinical options available that repair and regenerate heart tissue following a heart attack. As a result, the only option for many patients that have suffered a heart attack and developed advanced heart failure, is a fully invasive heart transplant. This is a very serious procedure for the patient, and very costly for society.

“The development of a cell therapy to regenerate cardiac tissue will be transformative for a considerable number of patients globally. A minimally invasive, cell therapy, that uses a patient’s own stem cells, could also considerably reduce treatment costs.”

Matthieu de Kalbermatten, CEO at CellProthera, said: “Bringing the therapy to market as a minimally invasive therapy is vital to tackle, from the root, the harmful effects of heart attacks and improve quality of so many lives.

“The impressive progress of the CellProthera EXCELLENT trial is a testament to the work of our team and our stakeholders. All of the trial sites in the UK and France are committed to admitting and treating the final patients as quickly as possible. In 2024, we will look to start the phase III trial, where we will be recruiting patients from across Europe, with the aim of potential future market authorisation and bringing this vital treatment to all patients.”

NIHR awards £4m to Birmingham Clinical Research Facility to enhance the delivery of research

The Birmingham NIHR Clinical Research Facility (CRF) has been awarded £4 million from the National Institute for Health and Care Research (NIHR).

This funding is part of a total investment of £96 million that has been awarded to NHS organisations across England, to enhance the delivery of research through improving research facilities for patients across the NHS, helping teams to find new ways to prevent and treat diseases.

The Birmingham NIHR CRF is a collaboration between three BHP members – University Hospitals Birmingham NHS Foundation Trust (UHB), Birmingham Women’s and Children’s NHS Foundation Trust (BWC) and the University of Birmingham (UoB).

In Birmingham, new equipment will enable the delivery of innovative health technology services, including a range of cell and gene therapies requiring specialist pharmacy facilities. For example, onsite isolators will support preparation within the research facilities, speeding up the delivery of CAR-T trials for patients with haematology (blood) cancers, as well as trials into cancer vaccines for patients with a variety of solid tumour cancers.

The funding will also provide new laboratory equipment, essential for storing samples from patients recruited to metabolic research studies. This will support researchers with ground breaking work in the prevention, treatment and management of metabolic disease for adults and children across Birmingham.

The bid was led by Jo Gray, NIHR Birmingham Clinical Research Facility Clinical Manager, who said: “This successful bid for equipment and upgrades to our facility is fantastic and will make such a difference to patients and research teams across all partner sites.

“We have ambitious plans in place to upgrade existing equipment, as well as increase our ability to support new research across the sites. New equipment will include a paediatric ‘peapod’, which measures body composition and growth in premature born infants, and biosafety cabinets, which provide an enclosed ventilated space for drug preparation.

“Our portfolio of gastrointestinal (GI) and respiratory studies will also be able to grow with the addition of new endoscopy equipment. One of the key GI trials to benefit will be the INCEPTION clinic for patients with Inflammatory Bowel Disease (IBD). This trial aims to improve diagnosis and prognosis, and make more informed decisions on IBD treatment through biomarker discovery and implementation, by understanding more about how different microbiomes affect gut and oral immune responses.”

Professor Lorraine Harper, NIHR Birmingham Clinical Research Facility Programme Director, added: “We are tremendously proud that our hospitals have been selected for this award from the NIHR to improve the delivery of research in our local population. The award, which builds on existing clinical-academic collaborations facilitated by Birmingham Health Partners, will benefit our adult and paediatric patients, improving their access to new therapies and treatments, which can potentially be life-changing.”

Dr. Jan Idkowiak, NIHR Birmingham Clinical Research Facility Director (BWC), said: “This is very exciting. This award allows us to expand our ability to deliver cutting-edge clinical research beyond the Children’s Hospital, as it will enable us to include pregnant women and their children at the Women’s Hospital. This will be a huge benefit for our patients and will offer great opportunities to develop new therapies.”  

Professor Philip Newsome, Director of the NIHR Birmingham Biomedical Research Centre (BRC), commented: “This is fantastic news for both the CRF and for the organisations that work with them, like the Birmingham BRC. The CRF has been a key partner in delivering many of our experimental research studies, and we collaborate closely on our training, patient and public involvement, and equality, diversity and inclusion programmes too. We are looking forward to continuing working together to deliver patient benefit.”