Skip to main content

Treatment hope for patients with rare disorder following clinical trial

Patients with a rare hereditary disorder may soon benefit from a new treatment which has undergone a promising trial at Queen Elizabeth Hospital Birmingham (QEHB) – part of BHP founder-members University Hospitals Birmingham NHS Foundation Trust.

The experimental drug, called mRNA-3927, has been tested on patients for the first time as part of a study into propionic acidaemia – a serious metabolic disorder which means the body is unable to process certain parts of proteins and fats properly. This can lead to a build-up of harmful substances in the body and, without appropriate treatment, can be fatal.

Patients with this condition must follow a specific diet, including a low protein intake and specific food for life. Symptoms include: vomiting, lethargy, dehydration, and acid build up in the body. Liver and kidney transplant is a surgical option that can help reduce the frequency of acute metabolic episodes.

QEHB is the only adult centre in the world running this study whose initial findings have just been published.

Prof. Tarekegn Hiwot, Consultant in Inherited Metabolic Disorders at QEHB and Honorary Professor in the Institute of Metabolism and Systems Research at fellow BHP founder the University of Birmingham, led the trial and recruited patients for the study. He said: “We conducted a study of mRNA-3927 with 16 participants to find the safety, tolerability, and optimal dose. Our interim analysis has shown significant reduction of 70% in preventing severe metabolic crisis. The treatment was safe and well tolerated.

“In summary, this study explores a promising, first of its kind treatment for propionic acidaemia using mRNA-3927, aiming to improve patients’ health and reduce dangerous metabolic events.

“This study may also serve as a proof of concept in using mRNA treatment for other life limiting single gene genetic conditions in general.”

The interim results of the study were published in Nature.

You might also be interested in: